Math::Complex(3p)Perl Programmers Reference GuidMath::Complex(3p)

Math::Complex - complex numbers and associated mathematical functions

use Math::Complex; $z = Math::Complex->make(5, 6); $t = 4 - 3*i + $z; $j = cplxe(1, 2*pi/3);

This package lets you create and manipulate complex numbers. By default,Perllimits itself to real numbers, but an extra "use" statement brings full complex support, along with a full set of mathematical functions typically associated with and/or extended to complex numbers. If you wonder what complex numbers are, they were invented to be able to solve the following equation: x*x = -1 and by definition, the solution is notedi(engineers usejinstead sinceiusually denotes an intensity, but the name does not matter). The numberiis a pureimaginarynumber. The arithmetics with pure imaginary numbers works just like you would expect it with real numbers... you just have to remember that i*i = -1 so you have: 5i + 7i = i * (5 + 7) = 12i 4i - 3i = i * (4 - 3) = i 4i * 2i = -8 6i / 2i = 3 1 / i = -i Complex numbers are numbers that have both a real part and an imaginary part, and are usually noted: a + bi where "a" is therealpart and "b" is theimaginarypart. The arithmetic with complex numbers is straightforward. You have to keep track of the real and the imaginary parts, but otherwise the rules used for real numbers just apply: perl v5.8.8 2005-02-05 1 Math::Complex(3p)Perl Programmers Reference GuidMath::Complex(3p) (4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i (2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i A graphical representation of complex numbers is possible in a plane (also called thecomplex plane, but it's really a 2D plane). The number z = a + bi is the point whose coordinates are (a, b). Actually, it would be the vector originating from (0, 0) to (a, b). It follows that the addition of two complex numbers is a vec- torial addition. Since there is a bijection between a point in the 2D plane and a complex number (i.e. the mapping is unique and reciprocal), a complex number can also be uniquely identi- fied with polar coordinates: [rho, theta] where "rho" is the distance to the origin, and "theta" the angle between the vector and thexaxis. There is a notation for this using the exponential form, which is: rho * exp(i * theta) whereiis the famous imaginary number introduced above. Conversion between this form and the cartesian form "a + bi" is immediate: a = rho * cos(theta) b = rho * sin(theta) which is also expressed by this formula: z = rho * exp(i * theta) = rho * (cos theta + i * sin theta) In other words, it's the projection of the vector onto thexandyaxes. Mathematicians callrhothenormormodulusandthetatheargumentof the complex number. Thenormof "z" will be noted abs(z). The polar notation (also known as the trigonometric representation) is much more handy for performing multipli- cations and divisions of complex numbers, whilst the carte- sian notation is better suited for additions and subtrac- tions. Real numbers are on thexaxis, and thereforethetais zero orpi. All the common operations that can be performed on a real number have been defined to work on complex numbers as well, perl v5.8.8 2005-02-05 2 Math::Complex(3p)Perl Programmers Reference GuidMath::Complex(3p) and are merelyextensionsof the operations defined on real numbers. This means they keep their natural meaning when there is no imaginary part, provided the number is within their definition set. For instance, the "sqrt" routine which computes the square root of its argument is only defined for non-negative real numbers and yields a non-negative real number (it is an application fromR+toR+). If we allow it to return a com- plex number, then it can be extended to negative real numbers to become an application fromRtoC(the set of complex numbers): sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i It can also be extended to be an application fromCtoC, whilst its restriction toRbehaves as defined above by using the following definition: sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2) Indeed, a negative real number can be noted "[x,pi]" (the modulusxis always non-negative, so "[x,pi]" is really "-x", a negative number) and the above definition states that sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i which is exactly what we had defined for negative real numbers above. The "sqrt" returns only one of the solutions: if you want the both, use the "root" function. All the common mathematical functions defined on real numbers that are extended to complex numbers share that same property of workingas usualwhen the imaginary part is zero (otherwise, it would not be called an extension, would it?). Anewoperation possible on a complex number that is the identity for real numbers is called theconjugate, and is noted with a horizontal bar above the number, or "~z" here. z = a + bi ~z = a - bi Simple... Now look: z * ~z = (a + bi) * (a - bi) = a*a + b*b We saw that the norm of "z" was noted abs(z) and was defined as the distance to the origin, also known as: perl v5.8.8 2005-02-05 3 Math::Complex(3p)Perl Programmers Reference GuidMath::Complex(3p) rho = abs(z) = sqrt(a*a + b*b) so z * ~z = abs(z) ** 2 If z is a pure real number (i.e. "b == 0"), then the above yields: a * a = abs(a) ** 2 which is true ("abs" has the regular meaning for real number, i.e. stands for the absolute value). This example explains why the norm of "z" is noted abs(z): it extends the "abs" function to complex numbers, yet is the regular "abs" we know when the complex number actually has no imaginary part... This justifiesa posterioriour use of the "abs" notation for the norm.

Given the following notations: z1 = a + bi = r1 * exp(i * t1) z2 = c + di = r2 * exp(i * t2) z = <any complex or real number> the following (overloaded) operations are supported on com- plex numbers: z1 + z2 = (a + c) + i(b + d) z1 - z2 = (a - c) + i(b - d) z1 * z2 = (r1 * r2) * exp(i * (t1 + t2)) z1 / z2 = (r1 / r2) * exp(i * (t1 - t2)) z1 ** z2 = exp(z2 * log z1) ~z = a - bi abs(z) = r1 = sqrt(a*a + b*b) sqrt(z) = sqrt(r1) * exp(i * t/2) exp(z) = exp(a) * exp(i * b) log(z) = log(r1) + i*t sin(z) = 1/2i (exp(i * z1) - exp(-i * z)) cos(z) = 1/2 (exp(i * z1) + exp(-i * z)) atan2(y, x) = atan(y / x) # Minding the right quadrant, note the order. The definition used for complex arguments ofatan2() is -i log((x + iy)/sqrt(x*x+y*y)) The following extra operations are supported on both real and complex numbers: perl v5.8.8 2005-02-05 4 Math::Complex(3p)Perl Programmers Reference GuidMath::Complex(3p) Re(z) = a Im(z) = b arg(z) = t abs(z) = r cbrt(z) = z ** (1/3) log10(z) = log(z) / log(10) logn(z, n) = log(z) / log(n) tan(z) = sin(z) / cos(z) csc(z) = 1 / sin(z) sec(z) = 1 / cos(z) cot(z) = 1 / tan(z) asin(z) = -i * log(i*z + sqrt(1-z*z)) acos(z) = -i * log(z + i*sqrt(1-z*z)) atan(z) = i/2 * log((i+z) / (i-z)) acsc(z) = asin(1 / z) asec(z) = acos(1 / z) acot(z) = atan(1 / z) = -i/2 * log((i+z) / (z-i)) sinh(z) = 1/2 (exp(z) - exp(-z)) cosh(z) = 1/2 (exp(z) + exp(-z)) tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z)) csch(z) = 1 / sinh(z) sech(z) = 1 / cosh(z) coth(z) = 1 / tanh(z) asinh(z) = log(z + sqrt(z*z+1)) acosh(z) = log(z + sqrt(z*z-1)) atanh(z) = 1/2 * log((1+z) / (1-z)) acsch(z) = asinh(1 / z) asech(z) = acosh(1 / z) acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1))arg,abs,log,csc,cot,acsc,acot,csch,coth,acosech,acotanh, have aliasesrho,theta,ln,cosec,cotan,acosec,acotan,cosech,cotanh,acosech,acotanh, respectively. "Re", "Im", "arg", "abs", "rho", and "theta" can be used also as mutators. The "cbrt" returns only one of the solu- tions: if you want all three, use the "root" function. Therootfunction is available to compute all thenroots of some complex, wherenis a strictly positive integer. There are exactlynsuch roots, returned as a list. Getting the number mathematicians call "j" such that: perl v5.8.8 2005-02-05 5 Math::Complex(3p)Perl Programmers Reference GuidMath::Complex(3p) 1 + j + j*j = 0; is a simple matter of writing: $j = ((root(1, 3))[1]; Thekth root for "z = [r,t]" is given by: (root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n) You can return thekth root directly by "root(z, n, k)", indexing starting fromzeroand ending atn - 1. Thespaceshipcomparison operator, <=>, is also defined. In order to ensure its restriction to real numbers is conform to what you would expect, the comparison is run on the real part of the complex number first, and imaginary parts are compared only when the real parts match.

To create a complex number, use either: $z = Math::Complex->make(3, 4); $z = cplx(3, 4); if you know the cartesian form of the number, or $z = 3 + 4*i; if you like. To create a number using the polar form, use either: $z = Math::Complex->emake(5, pi/3); $x = cplxe(5, pi/3); instead. The first argument is the modulus, the second is the angle (in radians, the full circle is 2*pi). (Mnemonic: "e" is used as a notation for complex numbers in the polar form). It is possible to write: $x = cplxe(-3, pi/4); but that will be silently converted into "[3,-3pi/4]", since the modulus must be non-negative (it represents the distance to the origin in the complex plane). It is also possible to have a complex number as either argu- ment of the "make", "emake", "cplx", and "cplxe": the appropriate component of the argument will be used. perl v5.8.8 2005-02-05 6 Math::Complex(3p)Perl Programmers Reference GuidMath::Complex(3p) $z1 = cplx(-2, 1); $z2 = cplx($z1, 4); The "new", "make", "emake", "cplx", and "cplxe" will also understand a single (string) argument of the forms 2-3i -3i [2,3] [2,-3pi/4] [2] in which case the appropriate cartesian and exponential com- ponents will be parsed from the string and used to create new complex numbers. The imaginary component and the theta, respectively, will default to zero. The "new", "make", "emake", "cplx", and "cplxe" will also understand the case of no arguments: this means plain zero or (0, 0).

When printed, a complex number is usually shown under its cartesian stylea+bi, but there are legitimate cases where the polar style [r,t] is more appropriate. The process of converting the complex number into a string that can be displayed is known asstringification. By calling the class method "Math::Complex::display_format" and supplying either "polar" or "cartesian" as an argument, you override the default display style, which is "carte- sian". Not supplying any argument returns the current set- tings. This default can be overridden on a per-number basis by cal- ling the "display_format" method instead. As before, not supplying any argument returns the current display style for this number. Otherwise whatever you specify will be the new display style forthisparticular number. For instance: use Math::Complex; Math::Complex::display_format('polar'); $j = (root(1, 3))[1]; print "j = $j\n"; # Prints "j = [1,2pi/3]" $j->display_format('cartesian'); print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i" The polar style attempts to emphasize arguments likek*pi/n(wherenis a positive integer andkan integer within [-9, perl v5.8.8 2005-02-05 7 Math::Complex(3p)Perl Programmers Reference GuidMath::Complex(3p) +9]), this is calledpolar pretty-printing. For the reverse of stringifying, see the "make" and "emake".CHANGED IN PERL 5.6The "display_format" class method and the corresponding "display_format" object method can now be called using a parameter hash instead of just a one parameter. The old display format style, which can have values "carte- sian" or "polar", can be changed using the "style" parame- ter. $j->display_format(style => "polar"); The one parameter calling convention also still works. $j->display_format("polar"); There are two new display parameters. The first one is "format", which is asprintf()-style format string to be used for both numeric parts of the complex number(s). The is somewhat system-dependent but most often it corresponds to "%.15g". You can revert to the default by setting the "format" to "undef". # the $j from the above example $j->display_format('format' => '%.5f'); print "j = $j\n"; # Prints "j = -0.50000+0.86603i" $j->display_format('format' => undef); print "j = $j\n"; # Prints "j = -0.5+0.86603i" Notice that this affects also the return values of the "display_format" methods: in list context the whole parame- ter hash will be returned, as opposed to only the style parameter value. This is a potential incompatibility with earlier versions if you have been calling the "display_format" method in list context. The second new display parameter is "polar_pretty_print", which can be set to true or false, the default being true. See the previous section for what this means.

Thanks to overloading, the handling of arithmetics with com- plex numbers is simple and almost transparent. Here are some examples: perl v5.8.8 2005-02-05 8 Math::Complex(3p)Perl Programmers Reference GuidMath::Complex(3p) use Math::Complex; $j = cplxe(1, 2*pi/3); # $j ** 3 == 1 print "j = $j, j**3 = ", $j ** 3, "\n"; print "1 + j + j**2 = ", 1 + $j + $j**2, "\n"; $z = -16 + 0*i; # Force it to be a complex print "sqrt($z) = ", sqrt($z), "\n"; $k = exp(i * 2*pi/3); print "$j - $k = ", $j - $k, "\n"; $z->Re(3); # Re, Im, arg, abs, $j->arg(2); # (the last two aka rho, theta) # can be used also as mutators.

The division (/) and the following functions log ln log10 logn tan sec csc cot atan asec acsc acot tanh sech csch coth atanh asech acsch acoth cannot be computed for all arguments because that would mean dividing by zero or taking logarithm of zero. These situa- tions cause fatal runtime errors looking like this cot(0): Division by zero. (Because in the definition of cot(0), the divisor sin(0) is 0) Died at ... or atanh(-1): Logarithm of zero. Died at... For the "csc", "cot", "asec", "acsc", "acot", "csch", "coth", "asech", "acsch", the argument cannot be 0 (zero). For the logarithmic functions and the "atanh", "acoth", the argument cannot be 1 (one). For the "atanh", "acoth", the argument cannot be "-1" (minus one). For the "atan", "acot", the argument cannot be "i" (the imaginary unit). For the "atan", "acoth", the argument cannot be "-i" (the negative imaginary unit). For the "tan", "sec", "tanh", the argument cannot bepi/2+k * pi, wherekis any integer. atan2(0, 0) is undefined, and if the complex arguments are used foratan2(), a division by zero will happen if z1**2+z2**2 == 0. perl v5.8.8 2005-02-05 9 Math::Complex(3p)Perl Programmers Reference GuidMath::Complex(3p) Note that because we are operating on approximations of real numbers, these errors can happen when merely `too close' to the singularities listed above.

The "make" and "emake" accept both real and complex argu- ments. When they cannot recognize the arguments they will die with error messages like the following Math::Complex::make: Cannot take real part of ... Math::Complex::make: Cannot take real part of ... Math::Complex::emake: Cannot take rho of ... Math::Complex::emake: Cannot take theta of ...

Saying "use Math::Complex;" exports many mathematical rou- tines in the caller environment and even overrides some ("sqrt", "log", "atan2"). This is construed as a feature by the Authors, actually... ;-) All routines expect to be given real or complex numbers. Don't attempt to use BigFloat, since Perl has currently no rule to disambiguate a '+' operation (for instance) between two overloaded entities. In Cray UNICOS there is some strange numerical instability that results inroot(),cos(),sin(),cosh(),sinh(), losing accuracy fast. Beware. The bug may be in UNICOS math libs, in UNICOS C compiler, in Math::Complex. Whatever it is, it does not manifest itself anywhere else where Perl runs.

Daniel S. Lewart <d-lewart@uiuc.edu> Original authors Raphael Manfredi <Raphael_Manfredi@pobox.com> and Jarkko Hietaniemi <jhi@iki.fi> perl v5.8.8 2005-02-05 10

Generated on 2017-04-03 16:26:17 by `$MirOS: src/scripts/roff2htm,v 1.88 2017/01/29 00:51:06 tg Exp $`

These manual pages and other documentation are copyrighted by their respective writers;
their source is available at our CVSweb,
AnonCVS, and other mirrors. The rest is Copyright © 2002–2017 The MirOS Project, Germany.

This product includes material
provided by **mirabilos**.

This manual page’s HTML representation is supposed to be valid XHTML/1.1; if not, please send a bug report — diffs preferred.