MirOS Manual: initstate(3), random(3), setstate(3), srandom(3), srandomdev(3)

RANDOM(3)                  BSD Programmer's Manual                   RANDOM(3)

NAME

     random, srandom, srandomdev, initstate, setstate - better random number
     generator; routines for changing generators

SYNOPSIS

     #include <stdlib.h>

     long
     random(void);

     void
     srandom(unsigned int seed);

     void
     srandomdev(void);

     char *
     initstate(unsigned int seed, char *state, size_t n);

     char *
     setstate(const char *state);

DESCRIPTION

     The random() function uses a non-linear additive feedback random number
     generator employing a default table of size 31 long integers to return
     successive pseudo-random numbers in the range from 0 to (2**31)-1. The
     period of this random number generator is very large, approximately
     16*((2**31)-1).

     The random() and srandom() functions have (almost) the same calling se-
     quence and initialization properties as rand(3)/srand(3). The difference
     is that rand produces a much less random sequence - in fact, the low
     dozen bits generated by rand go through a cyclic pattern. All the bits
     generated by random() are usable. For example, 'random()&01' will produce
     a random binary value.

     Like rand(3), random() will by default produce a sequence of numbers that
     can be duplicated by calling srandom() with '1' as the seed.

     The srandomdev() routine initializes a state array using the arandom(4)
     random number device which returns good random numbers, suitable for
     cryptographic use. Note that this particular seeding procedure can gen-
     erate states which are impossible to reproduce by calling srandom() with
     any value, since the succeeding terms in the state buffer are no longer
     derived from the LC algorithm applied to a fixed seed.

     The initstate() routine allows a state array, passed in as an argument,
     to be initialized for future use. The size of the state array (in bytes)
     is used by initstate() to decide how sophisticated a random number gen-
     erator it should use - the more state, the better the random numbers will
     be. (Current "optimal" values for the amount of state information are 8,
     32, 64, 128, and 256 bytes; other amounts will be rounded down to the
     nearest known amount. Using less than 8 bytes will cause an error.) The
     seed for the initialization (which specifies a starting point for the
     random number sequence, and provides for restarting at the same point) is
     also an argument. The initstate() function returns a pointer to the pre-
     vious state information array.

     Once a state has been initialized, the setstate() routine provides for
     rapid switching between states. The setstate() function returns a pointer
     to the previous state array; its argument state array is used for further
     random number generation until the next call to initstate() or set-
     state().

     Once a state array has been initialized, it may be restarted at a dif-
     ferent point either by calling initstate() (with the desired seed, the
     state array, and its size) or by calling both setstate() (with the state
     array) and srandom() (with the desired seed). The advantage of calling
     both setstate() and srandom() is that the size of the state array does
     not have to be remembered after it is initialized.

     With 256 bytes of state information, the period of the random number gen-
     erator is greater than 2**69 which should be sufficient for most pur-
     poses.

DIAGNOSTICS

     If initstate() is called with less than 8 bytes of state information, or
     if setstate() detects that the state information has been garbled, error
     messages are printed on the standard error output.

SEE ALSO

     arc4random(3), drand48(3), rand(3), random(4)

STANDARDS

     The random(), srandom(), initstate(), and setstate() functions conform to
     X/Open Portability Guide Issue 4.2 ("XPG4.2").

     The srandomdev() function is an extension.

HISTORY

     These functions appeared in 4.2BSD.

AUTHORS

     Earl T. Cohen

BUGS

     About 2/3 the speed of rand(3).

MirOS BSD #10-current           April 19, 1991                               1

Generated on 2014-07-04 21:17:45 by $MirOS: src/scripts/roff2htm,v 1.79 2014/02/10 00:36:11 tg Exp $

These manual pages and other documentation are copyrighted by their respective writers; their source is available at our CVSweb, AnonCVS, and other mirrors. The rest is Copyright © 2002‒2014 The MirOS Project, Germany.
This product includes material provided by Thorsten Glaser.

This manual page’s HTML representation is supposed to be valid XHTML/1.1; if not, please send a bug report – diffs preferred.