MirOS Manual: exp(3), exp2(3), exp2f(3), expf(3), expm1(3), expm1f(3)

EXP(3)                     BSD Programmer's Manual                      EXP(3)

NAME

     exp, expf, exp2, exp2f, expm1, expm1f, - exponential functions

LIBRARY

     libm

SYNOPSIS

     #include <math.h>

     double
     exp(double x);

     float
     expf(float x);

     double
     exp2(double x);

     float
     exp2f(float x);

     double
     expm1(double x);

     float
     expm1f(float x);

DESCRIPTION

     The exp() and the expf() functions compute the base e exponential value
     of the given argument x.

     The exp2() and exp2f() functions compute the base 2 exponential of the
     given argument x.

     The expm1() and the expm1f() functions computes the value exp(x)-1 accu-
     rately even for tiny argument x.

RETURN VALUES

     These functions will return the appropriate computation unless an error
     occurs or an argument is out of range. The functions exp() and expm1()
     detect if the computed value will overflow, set the global variable errno
     to ERANGE and cause a reserved operand fault on a VAX. The function
     pow(x, y) checks to see if x < 0 and y is not an integer, in the event
     this is true, the global variable errno is set to EDOM and on the VAX
     generate a reserved operand fault. On a VAX, errno is set to EDOM and the
     reserved operand is returned by log unless x > 0, by log1p() unless x >
     -1.

ERRORS

     exp(x), log(x), expm1(x) and log1p(x) are accurate to within an ulp, and
     log10(x) to within about 2 ulps; an ulp is one Unit in the Last Place.
     The error in pow(x, y) is below about 2 ulps when its magnitude is
     moderate, but increases as pow(x, y) approaches the over/underflow thres-
     holds until almost as many bits could be lost as are occupied by the
     floating-point format's exponent field; that is 8 bits for VAX D and 11
     bits for IEEE 754 Double. No such drastic loss has been exposed by test-
     ing; the worst errors observed have been below 20 ulps for VAX D, 300
     ulps for IEEE 754 Double. Moderate values of pow() are accurate enough
     that pow(integer, integer) is exact until it is bigger than 2**56 on a
     VAX, 2**53 for IEEE 754.

NOTES

     The functions exp(x)-1 and log(1+x) are called expm1 and logp1 in BASIC
     on the Hewlett-Packard HP-71B and APPLE Macintosh, EXP1 and LN1 in Pas-
     cal, exp1 and log1 in C on APPLE Macintoshes, where they have been pro-
     vided to make sure financial calculations of ((1+x)**n-1)/x, namely
     expm1(n*log1p(x))/x, will be accurate when x is tiny. They also provide
     accurate inverse hyperbolic functions.

     The function pow(x, 0) returns x**0 = 1 for all x including x = 0, Infin-
     ity (not found on a VAX), and NaN (the reserved operand on a VAX). Previ-
     ous implementations of pow may have defined x**0 to be undefined in some
     or all of these cases. Here are reasons for returning x**0 = 1 always:

     1.      Any program that already tests whether x is zero (or infinite or
             NaN) before computing x**0 cannot care whether 0**0 = 1 or not.
             Any program that depends upon 0**0 to be invalid is dubious any-
             way since that expression's meaning and, if invalid, its conse-
             quences vary from one computer system to another.

     2.      Some Algebra texts (e.g. Sigler's) define x**0 = 1 for all x, in-
             cluding x = 0. This is compatible with the convention that ac-
             cepts a[0] as the value of polynomial

                   p(x) = a[0]*x**0 + a[1]*x**1 + a[2]*x**2 +...+ a[n]*x**n

             at x = 0 rather than reject a[0]*0**0 as invalid.

     3.      Analysts will accept 0**0 = 1 despite that x**y can approach any-
             thing or nothing as x and y approach 0 independently. The reason
             for setting 0**0 = 1 anyway is this:

                   If x(z) and y(z) are any functions analytic (expandable in
                   power series) in z around z = 0, and if there x(0) = y(0) =
                   0, then x(z)**y(z) -> 1 as z -> 0.

     4.      If 0**0 = 1, then infinity**0 = 1/0**0 = 1 too; and then NaN**0 =
             1 too because x**0 = 1 for all finite and infinite x, i.e., in-
             dependently of x.

SEE ALSO

     math(3)

STANDARDS

     The exp() functions conform to ANSI X3.159-1989 ("ANSI C"). The exp2(),
     exp2f(), expf(), expm1(), and expm1f() functions conform to ISO/IEC
     9899:1999 ("ISO C99").

HISTORY

     The exp() functions appeared in Version 6 AT&T UNIX. The expm1() function
     appeared in 4.3BSD.

MirOS BSD #10-current          February 9, 2014                              1

Generated on 2014-07-04 21:17:45 by $MirOS: src/scripts/roff2htm,v 1.79 2014/02/10 00:36:11 tg Exp $

These manual pages and other documentation are copyrighted by their respective writers; their source is available at our CVSweb, AnonCVS, and other mirrors. The rest is Copyright © 2002‒2014 The MirOS Project, Germany.
This product includes material provided by Thorsten Glaser.

This manual page’s HTML representation is supposed to be valid XHTML/1.1; if not, please send a bug report – diffs preferred.