MirBSD manpage: errno(2), intro(2)

INTRO(2)                   BSD Programmer's Manual                    INTRO(2)


     intro - introduction to system calls and error numbers


     #include <errno.h>


     The manual pages in section 2 provide an overview of the system calls,
     their error returns, and other common definitions and concepts.


     Nearly all of the system calls provide an error number in the external
     variable errno, which is currently defined as:

           extern int errno;

     Portable applications must not depend on this definition, and should only
     use errno as defined in <errno.h>. When a system call detects an error,
     it returns an integer value indicating failure (usually -1) and sets the
     variable errno accordingly. (This allows interpretation of the failure on
     receiving a -1 and to take action accordingly.) Successful calls never
     set errno; once set, it remains until another error occurs. It should
     only be examined after an error. Note that a number of system calls over-
     load the meanings of these error numbers, and that the meanings must be
     interpreted according to the type and circumstances of the call.

     The following is a complete list of the errors and their names as given
     in <sys/errno.h>.

     0 Error 0. Not used.

     1 EPERM Operation not permitted. An attempt was made to perform an opera-
             tion limited to processes with appropriate privileges or to the
             owner of a file or other resources.

     2 ENOENT No such file or directory. A component of a specified pathname
             did not exist, or the pathname was an empty string.

     3 ESRCH No such process. No process could be found corresponding to that
             specified by the given process ID.

     4 EINTR Interrupted function call. An asynchronous signal (such as SIGINT
             or SIGQUIT) was caught by the process during the execution of an
             interruptible function. If the signal handler performs a normal
             return, the interrupted function call will seem to have returned
             the error condition.

     5 EIO Input/output error. Some physical input or output error occurred.
             This error will not be reported until a subsequent operation on
             the same file descriptor and may be lost (over written) by any
             subsequent errors.

     6 ENXIO No such device or address. Input or output on a special file re-
             ferred to a device that did not exist, or made a request beyond
             the limits of the device. This error may also occur when, for ex-
             ample, a tape drive is not online or no disk pack is loaded on a

     7 E2BIG Arg list too long. The number of bytes used for the argument and
             environment list of the new process exceeded the limit NCARGS
             (specified in <sys/param.h>).

     8 ENOEXEC Exec format error. A request was made to execute a file that,
             although it has the appropriate permissions, was not in the for-
             mat required for an executable file.

     9 EBADF Bad file descriptor. A file descriptor argument was out of range,
             referred to no open file, or a read (write) request was made to a
             file that was only open for writing (reading).

     10 ECHILD No child processes. A wait(2) or waitpid(2) function was exe-
             cuted by a process that had no existing or unwaited-for child

     11 EDEADLK Resource deadlock avoided. An attempt was made to lock a sys-
             tem resource that would have resulted in a deadlock situation.

     12 ENOMEM Cannot allocate memory. The new process image required more
             memory than was allowed by the hardware or by system-imposed
             memory management constraints. A lack of swap space is normally
             temporary; however, a lack of core is not. Soft limits may be in-
             creased to their corresponding hard limits.

     13 EACCES Permission denied. An attempt was made to access a file in a
             way forbidden by its file access permissions.

     14 EFAULT Bad address. The system detected an invalid address in attempt-
             ing to use an argument of a call.

     15 ENOTBLK Not a block device. A block device operation was attempted on
             a non-block device or file.

     16 EBUSY Device busy. An attempt to use a system resource which was in
             use at the time in a manner which would have conflicted with the

     17 EEXIST File exists. An existing file was mentioned in an inappropriate
             context, for instance, as the new link name in a link(2) func-

     18 EXDEV Improper link. A hard link to a file on another filesystem was

     19 ENODEV Operation not supported by device. An attempt was made to apply
             an inappropriate function to a device, for example, trying to
             read a write-only device such as a printer.

     20 ENOTDIR Not a directory. A component of the specified pathname exist-
             ed, but it was not a directory, when a directory was expected.

     21 EISDIR Is a directory. An attempt was made to open a directory with
             write mode specified.

     22 EINVAL Invalid argument. Some invalid argument was supplied. (For ex-
             ample, specifying an undefined signal to a signal(3) or kill(2)

     23 ENFILE Too many open files in system. Maximum number of file descrip-
             tors allowable on the system has been reached and a request for
             an open cannot be satisfied until at least one has been closed.
             The sysctl(3) variable kern.maxfiles contains the current limit.

     24 EMFILE Too many open files. The maximum number of file descriptors al-
             lowable for this process has been reached and a request for an
             open cannot be satisfied until at least one has been closed.
             getdtablesize(3) will obtain the current limit.

     25 ENOTTY Inappropriate ioctl for device. A control function (see
             ioctl(2)) was attempted for a file or special device for which
             the operation was inappropriate.

     26 ETXTBSY Text file busy. The new process was a pure procedure (shared
             text) file which was open for writing by another process, or
             while the pure procedure file was being executed an open(2) call
             requested write access.

     27 EFBIG File too large. The size of a file exceeded the maximum. (The
             system-wide maximum file size is 2**63 bytes. Each filesystem may
             impose a lower limit for files contained within it.)

     28 ENOSPC Device out of space. A write(2) to an ordinary file, the crea-
             tion of a directory or symbolic link, or the creation of a direc-
             tory entry failed because no more disk blocks were available on
             the filesystem, or the allocation of an inode for a newly created
             file failed because no more inodes were available on the filesys-

     29 ESPIPE Illegal seek. An lseek(2) function was issued on a socket, pipe
             or FIFO.

     30 EROFS Read-only filesystem. An attempt was made to modify a file or
             create a directory on a filesystem that was read-only at the

     31 EMLINK Too many links. The maximum allowable number of hard links to a
             single file has been exceeded (see pathconf(2) for how to obtain
             this value).

     32 EPIPE Broken pipe. A write on a pipe, socket or FIFO for which there
             is no process to read the data.

     33 EDOM Numerical argument out of domain. A numerical input argument was
             outside the defined domain of the mathematical function.

     34 ERANGE Result out of range. A result of the function was too large to
             fit in the available space (perhaps exceeded precision).

     35 EAGAIN Resource temporarily unavailable. This is a temporary condition
             and later calls to the same routine may complete normally.

     36 EINPROGRESS Operation now in progress. An operation that takes a long
             time to complete (such as a connect(2)) was attempted on a non-
             blocking object (see fcntl(2)).

     37 EALREADY Operation already in progress. An operation was attempted on
             a non-blocking object that already had an operation in progress.

     38 ENOTSOCK Socket operation on non-socket. Self-explanatory.

     39 EDESTADDRREQ Destination address required. A required address was om-
             itted from an operation on a socket.

     40 EMSGSIZE Message too long. A message sent on a socket was larger than
             the internal message buffer or some other network limit.

     41 EPROTOTYPE Protocol wrong type for socket. A protocol was specified
             that does not support the semantics of the socket type requested.
             For example, you cannot use the ARPA Internet UDP protocol with
             type SOCK_STREAM.

     42 ENOPROTOOPT Protocol not available. A bad option or level was speci-
             fied in a getsockopt(2) or setsockopt(2) call.

     43 EPROTONOSUPPORT Protocol not supported. The protocol has not been con-
             figured into the system or no implementation for it exists.

     44 ESOCKTNOSUPPORT Socket type not supported. The support for the socket
             type has not been configured into the system or no implementation
             for it exists.

     45 EOPNOTSUPP Operation not supported. The attempted operation is not
             supported for the type of object referenced. Usually this occurs
             when a file descriptor refers to a file or socket that cannot
             support this operation, for example, trying to accept a connec-
             tion on a datagram socket.

     46 EPFNOSUPPORT Protocol family not supported. The protocol family has
             not been configured into the system or no implementation for it

     47 EAFNOSUPPORT Address family not supported by protocol family. An ad-
             dress incompatible with the requested protocol was used. For ex-
             ample, you shouldn't necessarily expect to be able to use NS ad-
             dresses with ARPA Internet protocols.

     48 EADDRINUSE Address already in use. Only one usage of each address is
             normally permitted.

     49 EADDRNOTAVAIL Cannot assign requested address. Normally results from
             an attempt to create a socket with an address not on this

     50 ENETDOWN Network is down. A socket operation encountered a dead net-

     51 ENETUNREACH Network is unreachable. A socket operation was attempted
             to an unreachable network.

     52 ENETRESET Network dropped connection on reset. The host you were con-
             nected to crashed and rebooted.

     53 ECONNABORTED Software caused connection abort. A connection abort was
             caused internal to your host machine.

     54 ECONNRESET Connection reset by peer. A connection was forcibly closed
             by a peer. This normally results from a loss of the connection on
             the remote socket due to a timeout or a reboot.

     55 ENOBUFS No buffer space available. An operation on a socket or pipe
             was not performed because the system lacked sufficient buffer
             space or because a queue was full.

     56 EISCONN Socket is already connected. A connect(2) request was made on
             an already connected socket; or, a sendto(2) or sendmsg(2) re-
             quest on a connected socket specified a destination when already

     57 ENOTCONN Socket is not connected. A request to send or receive data
             was disallowed because the socket was not connected and (when
             sending on a datagram socket) no address was supplied.

     58 ESHUTDOWN Cannot send after socket shutdown. A request to send data
             was disallowed because the socket had already been shut down with
             a previous shutdown(2) call.

     59 ETOOMANYREFS Too many references: can't splice. Not used in OpenBSD.

     60 ETIMEDOUT Operation timed out. A connect(2) or send(2) request failed
             because the connected party did not properly respond after a
             period of time. (The timeout period is dependent on the communi-
             cation protocol.)

     61 ECONNREFUSED Connection refused. No connection could be made because
             the target machine actively refused it. This usually results from
             trying to connect to a service that is inactive on the foreign

     62 ELOOP Too many levels of symbolic links. A path name lookup involved
             more than 32 (SYMLOOP_MAX) symbolic links.

     63 ENAMETOOLONG File name too long. A component of a path name exceeded
             255 (MAXNAMELEN) characters, or an entire path name exceeded 1023
             (MAXPATHLEN-1) characters.

     64 EHOSTDOWN Host is down. A socket operation failed because the destina-
             tion host was down.

     65 EHOSTUNREACH No route to host. A socket operation was attempted to an
             unreachable host.

     66 ENOTEMPTY Directory not empty. A directory with entries other than '.'
             and '..' was supplied to a remove directory or rename call.

     67 EPROCLIM Too many processes.

     68 EUSERS Too many users. The quota system ran out of table entries.

     69 EDQUOT Disc quota exceeded. A write(2) to an ordinary file, the crea-
             tion of a directory or symbolic link, or the creation of a direc-
             tory entry failed because the user's quota of disk blocks was ex-
             hausted, or the allocation of an inode for a newly created file
             failed because the user's quota of inodes was exhausted.

     70 ESTALE Stale NFS file handle. An attempt was made to access an open
             file (on an NFS filesystem) which is now unavailable as refer-
             enced by the file descriptor. This may indicate the file was
             deleted on the NFS server or some other catastrophic event oc-

     72 EBADRPC RPC struct is bad. Exchange of RPC information was unsuccess-

     73 ERPCMISMATCH RPC version wrong. The version of RPC on the remote peer
             is not compatible with the local version.

     74 EPROGUNAVAIL RPC prog. not avail. The requested program is not re-
             gistered on the remote host.

     75 EPROGMISMATCH Program version wrong. The requested version of the pro-
             gram is not available on the remote host (RPC).

     76 EPROCUNAVAIL Bad procedure for program. An RPC call was attempted for
             a procedure which doesn't exist in the remote program.

     77 ENOLCK No locks available. A system-imposed limit on the number of
             simultaneous file locks was reached.

     78 ENOSYS Function not implemented. Attempted a system call that is not
             available on this system.

     79 EFTYPE Inappropriate file type or format. The file contains invalid
             data or set to invalid modes.

     80 EAUTH Authentication error. Attempted to use an invalid authentication
             ticket to mount a NFS filesystem.

     81 ENEEDAUTH Need authenticator. An authentication ticket must be ob-
             tained before the given NFS filesystem may be mounted.

     82 EIPSEC IPsec processing failure. IPsec subsystem error. Not used in

     83 ENOATTR Attribute not found. A UFS Extended Attribute is not found for
             the specified pathname.


     Process ID
             Each active process in the system is uniquely identified by a
             non-negative integer called a process ID. The range of this ID is
             from 1 to 32766.

     Parent Process ID
             A new process is created by a currently active process; (see
             fork(2)). The parent process ID of a process is initially the
             process ID of its creator. If the creating process exits, the
             parent process ID of each child is set to the ID of a system pro-
             cess, init(8).

     Process Group
             Each active process is a member of a process group that is iden-
             tified by a non-negative integer called the process group ID.
             This is the process ID of the group leader. This grouping permits
             the signaling of related processes (see termios(4)) and the job
             control mechanisms of csh(1).

             A session is a set of one or more process groups. A session is
             created by a successful call to setsid(2), which causes the call-
             er to become the only member of the only process group in the new

     Session Leader
             A process that has created a new session by a successful call to
             setsid(2), is known as a session leader. Only a session leader
             may acquire a terminal as its controlling terminal (see

     Controlling Process
             A session leader with a controlling terminal is a controlling

     Controlling Terminal
             A terminal that is associated with a session is known as the con-
             trolling terminal for that session and its members.

     Terminal Process Group ID
             A terminal may be acquired by a session leader as its controlling
             terminal. Once a terminal is associated with a session, any of
             the process groups within the session may be placed into the
             foreground by setting the terminal process group ID to the ID of
             the process group. This facility is used to arbitrate between
             multiple jobs contending for the same terminal; (see csh(1) and

     Orphaned Process Group
             A process group is considered to be orphaned if it is not under
             the control of a job control shell. More precisely, a process
             group is orphaned when none of its members has a parent process
             that is in the same session as the group, but is in a different
             process group. Note that when a process exits, the parent process
             for its children is changed to be init(8), which is in a separate
             session. Not all members of an orphaned process group are neces-
             sarily orphaned processes (those whose creating process has exit-
             ed). The process group of a session leader is orphaned by defini-

     Real User ID and Real Group ID
             Each user on the system is identified by a positive integer
             termed the real user ID.

             Each user is also a member of one or more groups. One of these
             groups is distinguished from others and used in implementing ac-
             counting facilities. The positive integer corresponding to this
             distinguished group is termed the real group ID.

             All processes have a real user ID and real group ID. These are
             initialized from the equivalent attributes of the process that
             created it.

     Effective User ID, Effective Group ID, and Group Access List
             Access to system resources is governed by two values: the effec-
             tive user ID, and the group access list. The first member of the
             group access list is also known as the effective group ID. (In
             POSIX.1, the group access list is known as the set of supplemen-
             tary group IDs, and it is unspecified whether the effective group
             ID is a member of the list.)

             The effective user ID and effective group ID are initially the
             process's real user ID and real group ID respectively. Either may
             be modified through execution of a set-user-ID or set-group-ID
             file (possibly by one of its ancestors) (see execve(2)). By con-
             vention, the effective group ID (the first member of the group
             access list) is duplicated, so that the execution of a set-group-
             ID program does not result in the loss of the original (real)
             group ID.

             The group access list is a set of group IDs used only in deter-
             mining resource accessibility. Access checks are performed as
             described below in ``File Access Permissions''.

     Saved Set User ID and Saved Set Group ID
             When a process executes a new file, the effective user ID is set
             to the owner of the file if the file is set-user-ID, and the ef-
             fective group ID (first element of the group access list) is set
             to the group of the file if the file is set-group-ID. The effec-
             tive user ID of the process is then recorded as the saved set-
             user-ID, and the effective group ID of the process is recorded as
             the saved set-group-ID. These values may be used to regain those
             values as the effective user or group ID after reverting to the
             real ID (see setuid(2)). (In POSIX.1, the saved set-user-ID and
             saved set-group-ID are optional, and are used in setuid and set-
             gid, but this does not work as desired for the superuser.)

             A process is recognized as a superuser process and is granted
             special privileges if its effective user ID is 0.

     Special Processes
             The processes with process IDs of 0, 1, and 2 are special. Pro-
             cess 0 is the scheduler. Process 1 is the initialization process
             init(8), and is the ancestor of every other process in the sys-
             tem. It is used to control the process structure. Process 2 is
             the paging daemon.

             An integer assigned by the system when a file is referenced by
             open(2) or dup(2), or when a socket is created by pipe(2),
             socket(2) or socketpair(2), which uniquely identifies an access
             path to that file or socket from a given process or any of its

     File Name
             Names consisting of up to 255 (MAXNAMELEN) characters may be used
             to name an ordinary file, special file, or directory.

             These characters may be selected from the set of all ASCII char-
             acter excluding 0 (NUL) and the ASCII code for '/' (slash).

             Note that it is generally unwise to use '*', '?', '[' or ']' as
             part of file names because of the special meaning attached to
             these characters by the shell.

             Note also that (MAXNAMELEN) is an upper limit fixed by the ker-
             nel, meant to be used for sizing buffers. Some filesystems may
             have additional restrictions. These can be queried using
             pathconf(2) and fpathconf(2).

     Path Name
             A path name is a NUL-terminated character string starting with an
             optional slash '/', followed by zero or more directory names
             separated by slashes, optionally followed by a file name. The to-
             tal length of a path name must be less than 1024 (MAXPATHLEN)
             characters. Additional restrictions may apply, depending upon the
             filesystem, to be queried with pathconf(2) or fpathconf(2) if

             If a path name begins with a slash, the path search begins at the
             root directory. Otherwise, the search begins from the current
             working directory. A slash by itself names the root directory. An
             empty pathname is invalid.

             A directory is a special type of file that contains entries that
             are references to other files. Directory entries are called
             links. By convention, a directory contains at least two links,
             '.' and '..', referred to as dot and dot-dot respectively. Dot
             refers to the directory itself and dot-dot refers to its parent

     Root Directory and Current Working Directory
             Each process has associated with it a concept of a root directory
             and a current working directory for the purpose of resolving path
             name searches. A process's root directory need not be the root
             directory of the root filesystem.

     File Access Permissions
             Every file in the filesystem has a set of access permissions.
             These permissions are used in determining whether a process may
             perform a requested operation on the file (such as opening a file
             for writing). Access permissions are established at the time a
             file is created. They may be changed at some later time through
             the chmod(2) call.

             File access is broken down according to whether a file may be:
             read, written, or executed. Directory files use the execute per-
             mission to control if the directory may be searched.

             File access permissions are interpreted by the system as they ap-
             ply to three different classes of users: the owner of the file,
             those users in the file's group, anyone else. Every file has an
             independent set of access permissions for each of these classes.
             When an access check is made, the system decides if permission
             should be granted by checking the access information applicable
             to the caller.

             Read, write, and execute/search permissions on a file are granted
             to a process if:

             The process's effective user ID is that of the superuser. (Note:
             even the superuser cannot execute a non-executable file.)

             The process's effective user ID matches the user ID of the owner
             of the file and the owner permissions allow the access.

             The process's effective user ID does not match the user ID of the
             owner of the file, and either the process's effective group ID
             matches the group ID of the file, or the group ID of the file is
             in the process's group access list, and the group permissions al-
             low the access.

             Neither the effective user ID nor effective group ID and group
             access list of the process match the corresponding user ID and
             group ID of the file, but the permissions for ``other users'' al-
             low access.

             Otherwise, permission is denied.

     Sockets and Address Families
             A socket is an endpoint for communication between processes. Each
             socket has queues for sending and receiving data.

             Sockets are typed according to their communications properties.
             These properties include whether messages sent and received at a
             socket require the name of the partner, whether communication is
             reliable, the format used in naming message recipients, etc.

             Each instance of the system supports some collection of socket
             types; consult socket(2) for more information about the types
             available and their properties.

             Each instance of the system supports some number of sets of com-
             munications protocols. Each protocol set supports addresses of a
             certain format. An Address Family is the set of addresses for a
             specific group of protocols. Each socket has an address chosen
             from the address family in which the socket was created.


     intro(3), perror(3)


     An intro manual page appeared in Version 6 AT&T UNIX.

MirBSD #10-current            December 11, 1993                              8

Generated on 2022-12-24 01:00:14 by $MirOS: src/scripts/roff2htm,v 1.113 2022/12/21 23:14:31 tg Exp $ — This product includes material provided by mirabilos.

These manual pages and other documentation are copyrighted by their respective writers; their sources are available at the project’s CVSweb, AnonCVS and other mirrors. The rest is Copyright © 2002–2022 MirBSD.

This manual page’s HTML representation is supposed to be valid XHTML/1.1; if not, please send a bug report — diffs preferred.

Kontakt / Impressum & Datenschutzerklärung